Topological Methods for
Deep Learning

Abel Symposium, Geiranger
June 5, 2018

Gunnar Carlsson

Stanford University and Ayasdi Inc.



What is Deep Learning?

* Methodology based on neural networks

* Has produced outstanding classification results for complex data
* I[mages

* Text

* Molecules (Guowei Wei)



Problems

* Adversarial examples
* General lack of transparency

* Limits usefulness in many key domains, financial regulation, health

care

* Would like to be able to learn more complex models



Neural Networks
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Neural Networks

* Given a data set and an output function, perhaps Boolean valued
* Weights are assigned to the directed edges of the network

* Activation at a node is computed using uniform function of activations
of nodes connected to it

* Network is “trained” by optimization algorithms acting on the set of
weights

* Final output is a formula (very large) determined by the final set of
weights



Convolutional Neural Networks

* Structure of network adapted to specific cases
* Images (2D rectangular arrays)

* Text (1D arrays)



Convolutional Neural Networks
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TDA and Deep Learning
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Mumford Data Set (De Silva, Ishkhanov,
/omorodian, C.)

Analysis of a data set of 3 x 3 patches in natural images

Studied only “high variance” patches

Studies only densest such patches (frequently occurring motifs) — density proxies of
varying locality

Motivated by goal of understanding how tuning of neurons in visual cortex is

affected by statistics of natural images



Image Patch Analysis: Primary Circle

Highest density high variance patches — non-local density measure



Image Patch Analysis: Three Circle Model
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Image Patch Analysis: Klein Bottle
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Primary Visual Cortex

* Primary visual cortex (V1) lowest level processing beyond retina
* Higher levels (V2,V4, LGN, etc.) perform more abstract tasks
* Hubel-Wiesel show that individual neurons detect edges and lines

* Consistent with idea of compression of frequent signals



Visual Pathway
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Does Learning by CNN’s Behave Like
Human Learning?

Joint work with Rickard Bruel Gabrielsson



What Do We Want to Know?

* Can we see similarities to what we have found in the image patch

data?
* What happens as the network learns?

 What are the “responsibilities” of the various layers?



Data Sets

* MNIST - hand drawn images
 Cifarl0 — Images of various objects, airplanes, cars, etc.

* ImageNet — pretrained network VGG16



How to Build Networks for Data Sets

* Apply a projection to the data set

* Use the projection to bin the data into overlapping
bins

e  Cluster each bin using a fixed clustering method
(requires data equipped with metric)

* Create a node for each “partial cluster”

* Create an edge between any two nodes whose
corresponding clusters overlap



How to Build Networks for Data Sets
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Apply a projection to the data set

Use the projection to bin the data into overlapping
bins

Cluster each bin using a fixed clustering method
(requires data equipped with metric)

Create a node for each “partial cluster”

Create an edge between any two nodes whose
corresponding clusters overlap
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How to Build Networks for Data Sets
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How to Build Networks for Data Sets
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Apply a projection to the data set

Use the projection to bin the data into overlapping
bins

Cluster each bin using a fixed clustering method
(requires data equipped with metric)

Create a node for each “partial cluster”

Create an edge between any two nodes whose
corresponding clusters overlap
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How to Build Networks for Data Sets
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Topological Analysis of Weight Spaces (MNIST)

Dimension 0

Dimension 1
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Non-local density thresholding for layer 1 of depth 2 net



Topological Analysis of Weight Spaces (MNIST)

More localized density measurement for layer 1 of depth 2 net



Topological Analysis of Weight Spaces (Cifar10)

1st Layer of CNN for this data set, reduced to gray scale



Topological Analysis of Weight Spaces (Cifar10)

2nd Layer for single CNN, reduced to gray scale



Topological Analysis of Weight Spaces (Cifar10)
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1D barcode for tightly thresholded data set of for 2nd layers , reduced to gray scale



Topological Analysis of Weight Spaces (Cifar10)

100 200 500 900

Mapper representations over the number of iterations, tightly density thresholded, gray scale reduced



Topological Analysis of Weight Spaces (Cifar10)

1st layer, Coarse density thresholding, color retained



Topological Analysis of Weight Spaces (Cifar10)
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1st layer, looser density thresholding, more localized density estimator, color retained



Topological Analysis of Weight Spaces (Cifar10)

2nd layer, fine density thresholding, color retained



Topological Analysis of Weight Spaces (VGG16)

Mapper findings from each of 13 layers, same density thresholding, relatively local estimator



Topological Analysis of Activations — P. Musia

Adversarial Examples on MNIST

Convolutional Neural Network (NN) input output activities predicted class

pre-trained softmax classifier with ReLU units, dropout
test accuracy 99.39%
- qr
Tover Smensions: original S/ NN 8

output 10

fully connected | 1024

max pooling_|7x7x64 P
convolutional |14 x 14 x 64 target / NN /\M\ 1

imax pooling 14 x 14 x 32

convolutional |28 x 28 x 32

nput 28x28 adversarial z NN p- q’
0123456769
output units
Topological Data Analysis
Activities at output layer (Euclidean L2 metric, Neighborhood Lenses 1,2)
predicted class: blue - original (‘8’), teal —target (‘1’) red — adversarial examples

III

Detects “adversarial” behavior



Remarks

e Analysis of the black box is a data analysis problem in its own right
* Density critical - what is common and what is not

e Can begin to understand what happens in more abstract layers

* Can study behavior over number of iterations in optimization step

e Adversarial behavior can be detected



Feature Space Modeling

* Given a data matrix, one can also consider the transpose matrix

* The rows of the transpose are the features of the data set

* When there are many features, very useful to create Mapper models
* Compresses and recognizes correlations among features

* Each row of original matrix gives a function on feature set, and on

nodes of the topological model
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Explaining the Different Cohorts
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UCSD Microbiome
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Feature Space Modeling

* Gives direct representation of high dimensional data sets
* Can be viewed as a smoothing operation
* Treat any data analytic problem as an imaging problem

* Natural to plug into CNN’s



